So baut man Analytikplattformen - Teil 2: Intelligentes Benutzer- und Rollenkonzept

Lesezeit: ca. 2min.

Was braucht eine moderne Analytikplattform, um Unternehmen einen wirklichen Mehrwert zu bieten?

Warum ist gerade die Verwaltung von Nutzer- und Rollenrechten ein nicht zu unterschätzender Faktor beim Einsatz von Analytikplattformen? Im vorherigen Beitrag haben wir aufgezeigt, wie wichtig eine intuitive Oberfläche und ein offenes Nutzergruppenkonzept für den unternehmensweiten Einsatz von Data Science ist. Jetzt spinnen wir den Gedanken weiter – ohne intelligente Benutzer- und Rollenverwaltung kann dieses Konzept einfach nicht funktionieren.

Rechte und Rollen als erster Schritt zu neuen Funktionen!

Plattformen für den Einsatz von Data Science haben in der Regel eine kaum fassbare Datenbasis, mit der die jeweiligen Analysen arbeiten, aus denen dann wiederum Reports entstehen. Analytikplattformen müssen also die Fähigkeit besitzen auf Nutzer- und Gruppenebene individuelle Rechte vergeben zu können, um die Datenbasis effizient verarbeiten zu können. Nur so ist es möglich, die Fähigkeiten gezielt einzusetzen und gleichzeitig die Sicherheit der Datenbasis zu gewährleisten. Nicht jedes Individuum braucht einen kompletten Zugang. Zudem ist es nicht hilfreich eine einzige Nutzergruppe mit all den umfänglichen Admin-Rechten auszustatten.

Noch intelligenter wäre es, wenn sich Nutzer- und Rollenrechte auf einzelne Komponenten, wie zum Beispiel Filter oder Ergebnisansichten, beziehen. Auf diese Weise kann eine einzige Ansicht unterschiedliche Informationen anzeigen lassen, ohne dass man für jede Gruppe eine separate Ansicht bereitstellen muss. Es lassen sich also Analytikprojekte schneller umsetzen, da sie wiederverwendet und erweitert werden können, indem neue Komponenten zugefügt werden und gleichzeitig neue Nutzer über die jeweiligen Rollen Zugang erhalten, ohne den laufenden Betrieb anzuhalten. Wieder einen Schritt weitergedacht, lassen sich so zusätzliche Sicherheitsvorkehrungen einbauen, wenn verschiedene Rollen auf einer Plattform an einem Projekt zusammenarbeiten. Rolle X könnte so die Analyse einstellen und anpassen. Rolle Y könnte das Analyseskript zwar sehen, aber nicht beeinflussen, dafür aber die Ergebnisse entsprechend weiterverarbeiten. Dieser Punkt wird im Bereich Data Discovery, also der dem Erkennen von Mustern und Zusammenhängen, noch wichtiger.

Ein weiterer Punkt, der im Zusammenhang von Rollenkonzepten wichtig ist: Die sinnvolle Integration in bestehende Strukturen. Idealerweise sind die entsprechenden Analytikplattformen nämlich technisch auch so aufgebaut, dass sie als Ergänzung eines bestehendes Sicherheitskonzepts der Datenbasis fungieren. Sich also in den Kreislauf aus Authentifizierung, Autorisierung und Authentisierung ganz einfach einsetzen lassen. Es zeigt sich, der Punkt „Nutzer- und Rollenkonzept“ ist, intelligent umgesetzt, die Basis für weitere, wichtige Faktoren beim Einsatz von Analytikplattformen.

FAZIT: Verschiedene Nutzergruppen tragen dazu bei, Data Science möglichst gewinnbringend und unternehmensweit einzusetzen. Der nächste logische Schritt ist ein intelligentes Konzept aus granularen und graduellen Berechtigungen auf Rollen- und Komponentenebene und wird so  zur Basis für andere Funktionen.

Ausblick

Im nächsten Teil: Wie wichtig sind individualisierbare Workflows und flexible, wiederverwendbare Dashboards. Jetzt lesen

Sie vermissen einen Faktor oder sind anderer Meinung? Lassen Sie es uns wissen: Zur Umfrage (2 min.)


Christian Schreiner - Beitrag vom 22.08.2019

Christian Schreiner ist seit 2019 im Bereich Marketing der eoda GmbH tätig. Hier betreut er die innovative Data Science Plattform YUNA rund um das Thema Marketing. Privat interessiert er sich für Suchmaschinen-Optimierung und Trends in der Online-Kommunikation.

Abonnieren Sie unseren Datenanalyse-Blog